
REGULAR ARTICLE

Analysis of the stability of finite subspaces in density functional
theory

Ramiro Pino Æ Olivier Bokanowski Æ
Eduardo V. Ludeña Æ Roberto López Boada
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Abstract We study the problem of the stability of finite

subspaces with respect to the external potential in the

formulation of the Hohenberg-Kohn theorem in density

functional theory. We provide general procedures to con-

struct potentials that make any finite dimensional subspace

unstable, i.e., we construct potentials that acting over

functions that belong to the subspace, generate functions

that do not belong to that subspace. Explicit calculations of

these instability generating potentials are carried out for the

particle-in-a-box problem and for the hydrogen atom. We

also discuss the consequences of these instabilities on the

Kohn–Sham equations, as well as conditions for stability

and the relation between instability and nonuniqueness of

potentials.

Keywords DFT � Finite subspaces � Hydrogen atom

1 Introduction

Density functional theory (DFT) [1–14] (for some recent

reviews, critical appraisals, and extensions, see Refs. [15–

27]) has become the method of choice for electronic

structure calculations not only in condensed matter theory

but also in quantum chemistry [28–30].

Applications of this theory have relied on the Kohn–

Sham (KS) equations [31] where, the effective potentials

are obtained as variational derivatives of carefully taylored

approximations to the exact exchange-correlation func-

tionals. The use of the orbital paradigm for solving one-

particle KS equations is natural in this context, as the KS

equations are quite similar, albeit simpler than the Hartree–

Fock ones, due to the presence of a local multiplicative

potential for exchange and correlation. Most applications

make use of finite sets of one-particle primitive functions

for expanding the KS atomic, molecular, and crystalline

orbitals as well as the one-particle density.

Clearly, practical electronic structure calculations are

almost always performed on a subspace of the Hilbert

space. Such is the case, for example, when a finite

expansion of the N-particle wavefunction is used or when

the solutions to a system of N one-particle equations are

approximated in a finite basis set. However, when

extending the Hohenberg-Kohn approach (or of its alter-

native constrained-search formulation [32–34]) to finite

subspaces it becomes necessary to deal with the problem

of determining the conditions guaranteeing the adequate-

ness of this approach in finite subspaces. Some restricted

considerations related to this finite subspace problem have

been given by Epstein and Rosenthal [35] and by Katriel

et al. [36, 37]. More general considerations have been

advanced by Harriman [38], and more recently, by

Görling and Ernzerhof [39]. Also, this question is basic to
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some recent comparisons of the xOEP and HF methods

[40–42].

In a previous article [43], we have analyzed the stability

conditions that must be satisfied in order for the Hohen-

berg-Kohn theorem to hold in a subspace. In the present

article, we further analyze these stability conditions and

show that when they are not fulfilled, it is possible to

construct instability potentials which differ from each other

by more than a constant and which nevertheless associate

with the same density. We provide explicit methods for

obtaining these potentials and give illustrations of this

subspace instability for the particle-in-a-box problem and

for the hydrogen atom. As these examples arise in the

instability domain, they do not contradict, however, the

Hohenberg-Kohn theorem [39, 42]. In addition, from this

new perspective, we also discuss the nature of the con-

straints necessary so that stability conditions be preserved

in the subspace. It is shown that these conditions can be

imposed by requiring linear dependence among products of

one-particle orbitals, much in the manner already presented

by Görling et al. [42].

The plan of the article is as follows. In Sect. 2, we

briefly review the stability conditions previously obtained

by Pino et al. [43]. In Sect. 3, we prove a theorem under-

lying a constructive method for generating instability

potentials. In Sect. 4, we apply this method to the case of

the particle-in-a-box and the hydrogen atom. In Sect. 5, we

discuss the problem of the instability effects that the

introduction of finite basis sets brings into the Kohn–Sham

equations. We also consider the problem of constructing a

subclass of potentials v and v0 such that the stability con-

ditions are satisfied. Finally, we discuss the relationship

between instability and nonuniqueness of potentials in DFT

[44–51]. In Sect. 6 we present some conclusions.

2 The Hohenberg-Kohn theorem in finite subspaces

For a system formed by N-electrons interacting with an

‘‘external’’ potential

Vðr~1; . . .; r~NÞ ¼
XN

i¼1

vðr~iÞ: ð1Þ

the many-electron Hamiltonian is

bHv ¼ bH0 þ bV ð2Þ

where

bH0 ¼ �
1

2

X
r2

r~i
þ
XN�1

i¼1

XN

j¼iþ1

1

jr~i � r~jj
: ð3Þ

We assume that vðr~Þ 2 Y where Y = L3/2 ? L? is Lieb’s

class. Hence, v = v3/2 ? v? where v3/2 [ L3/2 and jv1j is a

bounded function [for the set of continuous functions f(x),

f(x) [ Lm if
R

dx jf ðxÞjm\1; in general, f [ Lm
loc if f [ Lm

and is integrable for any bounded set; also, f [ H1 if f,

rf [ L2].

When such a system possesses a ground-state wave-

function W0
v the associated one-electron density qv

0ðr~Þ is

defined by

qv
0ðr~1Þ ¼ N

Z
d3r~2 � � �

Z
d3r~N jWv

0ðr~1; . . .; r~NÞj2; ð4Þ

and, in that case, the Hohenberg-Kohn theorem states that

there exists a one-to-one correspondence between an

external potential vðr~Þ and the exact ground-state density

qv
0ðr~Þ:

The original proof of this theorem [1] was carried out by

reductio ad absurdum based on the assumption that although

W0
v and Wv0

0 associate with the same density q0
v = qv0

0 = q0

they satisfy different Schrödinger equations. As pointed out

by Lieb, this assumption implies that W0
v and Wv0

0 cannot

vanish in a set of positive measure. As this condition intro-

duces some difficulties, an alternative proof was advanced

by Pino et al. [43], where the above assumption is dropped.

This new approach, in turn, allowed both a straightforward

extension of the Hohenberg-Kohn theorem to subspaces

and an examination of the conditions that must be satisfied

in subspaces. For completeness, we review here the main

results for subspaces obtained in Ref. [43].

Theorem 2 (infinite-dimensional subspaces) of Ref. [43]

states that when F is an infinite subspace of the antisym-

metric N-particle Hilbert space in the domains of bHv and
bHv0 ; and the following conditions are satisfied: (a) v, v0 in Y,

(b) q0
v and qv0

0 are the ground state densities of the restric-

tions bHvjF and bHv0 jF; respectively, and (c) the ground state

wavefunction W0
v of bHv vanishes at most on a Lebesgue’s

zero-measure set of R
3N ; then the Hohenberg-Kohn theo-

rem is valid provided that F is stable under the action of bHv

and bHv0 ; i.e., ð bHvF � F and bHv0F � FÞ:
Similarly, using the fact that a multiplicative operator bV

associated to a scalar potential V is defined by ð bV ðWÞÞðxÞ :

¼ VðxÞWðxÞ; Theorem 3 (finite-dimensional subspaces) of

[43] states that when F is a finite-dimensional subspace of

L2ðRnÞ (n C 1), i.e.,

F ¼ uiðxÞ i ¼ 1; . . .;M;

Z
dxuiðxÞu�j ðxÞ

����
�

¼ dij;
XM

i¼1

juiðxÞj2 [ 0; x 2 R
n

)
ð5Þ

and V(x) is a continuous real-valued potential, then

ð bV ðFÞ � FÞ ¼) ðVðxÞ ¼ const on R
nÞ

A consequence of this theorem is

VðxÞwiðxÞ ¼ kiwiðxÞ; i ¼ 1; . . .;M: ð6Þ
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which implies that addition of a constant potential does not

alter either the one-particle density or the ordering of the

eigenvalues.

Thus, according to Theorem 3 of Ref. [43] one way to

satisfy the stability conditions of Theorem 2 of Ref. [43]

in the case when F is finite dimensional is to have

DV = const. However, there may be instability potentials

(defined as those potentials with DV = const that violate

the subspace stability conditions) which arise in finite

dimensional spaces when the assumption DVðFÞ�F is

relaxed. This is made more explicit in the next section.

3 Constructive method for generating instability

potentials

For a given external potential v [ Y and a finite subspace F

of Hilbert space, we devise in the present subsection a

general method for generating single particle external

potentials v0 (with v0- v = const) that do not fulfill the

stability conditions on the finite subspace and that, hence,

associate with the same ground-state density q0
v of v.

Theorem (Instability potentials) Let v [ Y, and F as in

Eq. 5 with finite dimension, dim F ¼ M þ 1 [ 1: Let P̂F ¼PM
n¼0 jWv

nihWv
nj be the orthogonal projector on F, and let

E0
v(M) B ��� B EM

v (M) be the ordered eigenvalues of

P̂F
bHvP̂F : Suppose that there exists k for which the strict

inequality E0
v(M) \ Ek

v(M) is satisfied. Then, there exists a

potential v0 [ Y such that P̂F
bHv0 P̂F and P̂F

bHvP̂F have the

same ground state, for Dv � v0 � v 6¼ constant:

Proof We first consider the proof for the case when the

ground state degeneracy is one. We take for F the ortho-

normal basis set of eigenvectors of bHv : W0
v,..., WM

v . In this

basis, the matrix elements of bHv0 are Hv0
ij ¼ hWv

i j bHv0 jWv
j i: In

particular using bHv0 ¼ bHv þ DV one has

Hv0

0i ¼ d0iE
v
0 þ

Z
Dvq0i ð7Þ

where qjiðr~Þ ¼ N
R

Wv
j
�Wv

i dr~2. . .dr~N : Note that qji 2
L1ðR3Þ by Schwartz inequality. The first step is to take

Dv [ Y, nonconstant, such that
Z

Dvq0i ¼ 0; for i ¼ 0; . . .;M: ð8Þ

This can be done as follows: take (hj)j=0...M ? 1 to be a set

of M ? 2 (nonconstant) linearly independent functions of

L1 \ L1 � Y (because for all p 2 ½1;1Þ; L1 \ L1 � Lp).

If we search for Dv as a linear combination of the hj, i.e.,

Dvðr~Þ ¼
XMþ1

j¼0

cjhjðr~Þ ð9Þ

then Eq. 8 is equivalent to an homogeneous system of

M ? 1 linear equations with M ? 2 unknowns. Thus, we

can find at least one nonzero set (c0,..., cM?1), giving a

solution for Dv. If Dv is constant, then it must be zero

because Dv [ L1, but this is not possible in view of the fact

that the (hj)’s are linearly independent.

At present we know that the matrix Hv0 [representative

of the operator P̂F
bHv0 P̂F in the (Wi

v) basis] has the eigen-

value E0
v with the eigenvector W0

v at least. We still do not

know if it is the ground state eigenvector of Hv0 : The

second step is to take Dv sufficiently small such that this

becomes true. Let us rename the preceding Dv as Dw and

look for Dv = k Dw where k[ 0. First, note that Eq. 8 is

still verified. Second, we know that the eigenvalues of a

matrix depend continuously on the coefficients: here the

eigenvalues of Hv0 depend continuously on k. Thus, for k
small enough, Ev0

0 ,..., Ev0
M will approach E0

v,..., EM
v . The fact

that E1
v [ E0

v implies that for k small enough, all Ev0

1 ,..., Ev0

M

will lie strictly above E0
v. This proves that Ev0

0 = E0
v, and

hence that W0
v is the ground state of Hv0 :

However, when Dv is not small we cannot, in general,

make assertions about the ordering of the eigenvalues,

because they depend on the calculated coefficients. In those

cases it is useful to perform numerical analysis for some

concrete cases, see examples in next section.

In the case of k [ 1 ground-state degeneracy, we take a

set of k 9 (M ? 1) ? 1 functions hj, and find a Dv such

that
Z

Dvqij ¼ 0 for i ¼ 0; . . .; k � 1 and j ¼ 0; . . .;M:

ð10Þ

Then W0
v,..., Wk-1

v are all ground state eigenvectors of
bHv0 jF ; with the same eigenvalue E0

v. (
The above ‘‘instability potential’’ theorem, therefore,

provides a method for associating in a finite subspace the

same ground state densities with potentials that differ by

more than a constant, (i.e., Dv = v0-v nonconstant).

Clearly, however, this does not imply a violation of the

Hohenberg-Kohn theorem, because these potentials are

unstable in the finite subspace. Note in addition, that we are

constructing a space F which is unstable by Hv0 ; and fur-

thermore obtain a particular ordering of the eigenvalues of

PF Hv0 PF.

Let us remark, moreover, that in general, it is possible to

construct other instability potentials by taking less than the

M ? 2 functions (hj) considered in the preceding proof.

Suppose that E0
v \ E1

v. Then, for the first step in the proof

of Theorem 3 we can require that
Z

Dvq0i ¼ 0; for i ¼ 1; . . .;M; ð11Þ
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where there is no condition for i = 0. In order to find a

Dv = 0 we can expand Dv as a linear combination of M ? 1

functions (hj). Subsequently, we can take a Dv sufficiently

small such that using the same arguments as in the previous

proof, we will have a value Ev0
0 lying close to (but

remaining different from) that of E0
v, for the same ground

state Wv0

0 = W0
v. In this case, the ordering of the eigen-

values cannot be guaranteed either when Dv is not small

enough.

4 Numerical results and discussion

4.1 Instability potentials for particle-in-a-box

Let us consider the well-known problem of a particle in a

one-dimensional box with infinite potential walls where the

inner region is defined by x [ [0, ? p]. Clearly the sim-

plest way to define the subspace F is in terms of the finite

subset formed by the first M ? 1 exact eigenfunctions

{Wn
v(x)}n=0

M of the particle-in-a-box problem,

Wv
nðxÞ ¼

ffiffi
2
p

q
sinðnþ 1Þx if x2 ½0;þp� for n¼ 0; . . .;M:

0 otherwise

(

ð12Þ

We carry out the present calculations using this exact set. But,

in addition, due to the fact that in realistic problems the exact

eigenfunctions are not known and necessarily one must rely

on approximations to these exact wave functions, we also

deal in the present case with approximate forms of these

eigenfunctions. In this vein, we start from the nonorthogonal

set fpiðxÞ ¼ x
Q

k¼1½ðk=iÞp� x�gK
i¼1 and obtain by Schmidt

orthonormalization the set {ui(x)}i=1
K which by construction

satisfies the boundary conditions ui(0) = 0 and ui(p) = 0.

We then use this set {ui(x)}i=1
K in order to provide a finite

matrix representation of the particle-in-a-box Hamiltonian
bHv and obtain, by matrix diagonalization, the approximate

eigenfunctions f eWv
nðxÞ ¼

PK
j¼1 cnjujðxÞgK�1

n¼0 :

We now assume that the subspace F is formed by the first

M ? 1 approximate eigenfunctions, namely, by the set

f eWv
nðxÞg

M
n¼0; and require that the conditions imposed by Eq. 8

be satisfied. We take as basis functions for expanding Dv(x),

the set of M ? 2 positive powers of x: {hj-1(x) = xj},

j = 1,..., M ? 2. These functions obviously belong to

Lieb’s class (Y) because of the finiteness of the interval.

Thus, Dv ¼
PMþ1

j¼0 cjhjðxÞ � cMþ1

PMþ1
j¼0 ajhjðxÞ where

aj � cj=cMþ1: Calculating the matrix elements, and solving

the system of equations—taking cM?1 equal to unity—we

obtain the desired new potential. Let us remark that an

infinite number of potentials are generated upon multipli-

cation by the freely specifiable parameter cM?1.

The potentials depicted in Fig. 1 correspond to solutions

to Eq. 8 for both the exact and the approximate particle-in-

a-box wavefunctions (for the latter we have made the

choice of cM?1 = 1). Also, for the present numerical

examples, we have selected K = 6 and M = 2. Thus, the

subspace F is spanned by the three approximate eigen-

functions eWv
0;
eWv

1 and eWv
2 expanded in terms of six ui basis

functions.

In Fig. 2 we show the behavior of the first three

eigenvalues for M = 2 varying cM?1 from -10 to 10 for

the case of the approximate wavefunctions. It can be seen

that E0 remains unaltered at the value of E0 = 0.5.

0.0 1.0 2.0 3.0 4.0
x

−2.0

0.0

2.0

4.0

6.0

8.0

 ∆
V

(x
)

Approx

Exact

Fig. 1 Graphical representation of the potential v0 generated through

Eq. 8 for a set of three exact and three approximate particle-in-a-box

eigenfunctions (M = 2 and cM?1 = 1)

−10.0 −5.0 0.0 5.0 10.0
cM+1

−2.00

0.00

2.00

4.00

6.00

8.00
E

E 0

E 1

E 2

Fig. 2 Numerical behavior of the eigenvalues versus cM?1 for the

instability potential corresponding to three approximate particle-in-a-

box wavefunctions and potentials v0 generated through Eq. 8
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However, we observe that it is not the lowest eigenvalue

throughout the whole range considered as there are regions

where E1 attains a lower value. Hence, it is only in the

region where E0 is the lowest eigenvalue that the present

procedure yields bona fide instability potentials for the

given finite subspace.

In Fig. 3, we show the behavior of the eigenvalues

obtained when Dv(x) is determined by solving the system

of equations given by Eq. 11. Note that in this case, E0 does

not remain constant but is modified by the choice of the

parameter cM. In this case, E0 remains as the lowest

eigenvalue within the range considered.

4.2 Instability potentials for the hydrogen atom

We determine families of instability potentials based on the

nonrelativistic hydrogen atom problem, as shown in Fig. 5.

In this case, the basis set {Wn
v(x)}n=0

M is formed by the first

M ? 1 hydrogenic eigenfunctions (which are bounded and

quadratically integrable): WnðrÞ � Rnþ1;0ðrÞ for n = 0,..., M.

Expanding the potential difference Dv(r) in terms of these

very same eigenfunctions, i.e., setting hn�1ðrÞ � Rn;0ðrÞ for

n = 1,..., M ? 2, and applying Eq. 8 we computed the

potential differences shown in Fig. 4 for M = 2. In Fig. 5

it can be observed that the ordering of the eigenvalues for

M = 2 is maintained throughout the range of cM?1 between

-10 and 10.

5 Some further considerations on instability potentials

In order to illustrate the variational difficulties arising from

the finiteness of the space consider, for example, the

problem of minimizing the Hamiltonian matrix for bHv over

the finite subspace F. As a result of this minimization, one

obtains a finite set of M ? 1 approximate antisymmetric

N-particle wavefunctions f eWv
0; . . .; eWv

Mg: The energy

minimum corresponds to the expectation value of bHv with

respect to the lowest wave function eWv
0: But if Eq. 8 is then

used in order to determine v0, it follows that
R

Dvq00 ¼ 0

and hence that the lowest energy is also given as the

expectation value of bHv0 with respect to eWv
0: Explicitly, we

have, therefore,

−10.0 −5.0 0.0 5.0 10.0
cM

−30.0

−10.0

10.0

30.0

E

E 0

E 1

E 2

Fig. 3 Numerical behavior of the eigenvalues versus cM?1 for the

instability potential corresponding to three approximate particle-in-a-

box wavefunctions and a potential v0 generated through Eq. 11

0.0 20.0 40.0 60.0
r

−0.002

0.000

0.002

0.004

0.006

 ∆
V

(r
)

Fig. 4 Graphical representation of the potential difference Dv(r)

generated via Eq. 8 for the hydrogen atom (M = 2 and cM?1 = 1)

−10.0 −5.0 0.0 5.0 10.0
cM+1

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

E

E 0

E 1

E 2

Fig. 5 Numerical behavior of the hydrogen atom eigenvalues versus

cM?1 for M = 2 corresponding to Dv generated by means of Eq. 8
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min
Wv2F

Wvj bHvjWv
D En o

¼ eWv
0j bHvj eWv

0

D E
¼ eWv

0j bHv0 j eWv
0

D E

ð13Þ

This implies that any density functional for the energy

Ev½q� � hWj bHvjWiðW! qÞ is not uniquely defined in a

finite space F as there can be, in principle, an infinite

number of Hamiltonians that differ in their external

potential by more than a constant but lead to the same

minimum Ev
0ðMÞ ¼ Ev½qv

0� ¼ Ev0 ½qv
0� in F.

5.1 Instability potentials and the Kohn–Sham equations

Consider now that we replace bHv of Eq. 2 by the Kohn–

Sham Hamiltonian

bHKS
s � bT þ bVs ð14Þ

where Vs ¼
PN

i¼1 vsðr~iÞ and where bT ¼
PN

i¼1 t̂ðr~iÞ; with

t̂ðr~Þ ¼ �ð1=2Þr2
r~: Let us denote the optimal Kohn–Sham

ground-state determinantal wavefunction by

WvðKSÞ
0 ¼ detffiffiffiffi

N
p

!
f/KS

1 ðr~1Þ; . . .;/KS
N ðr~NÞg ð15Þ

By definition, this wavefunction satisfies the Schrödinger

equation bHKS
s WvðKSÞ

0 ¼ E
vðKSÞ
0 WvðKSÞ

0 : In view of the fact that

the Hamiltonian operator bH ðKSÞ
v is separable, we can rewrite

this equation as the set of N single-particle equations for

the Kohn–Sham orbitals:

ðt̂ þ vsÞ/KS
i ¼ EKS

i /KS
i : ð16Þ

A procedure for generating instability potentials for the

Kohn–Sham case can be readily set up by following the

same of argument as in the instability potential theorem,

replacing bHv by bHKS
v and W0

v by W0
v(KS). Note that the

condition on the density difference becomes:
Z

Dvsq
KS
0i ¼ 0; for i ¼ 0; . . .;M: ð17Þ

where Dvs = v0s - vs= constant and qKS
ji ðr~Þ ¼

N
R

WvðKSÞ
j

�
WvðKSÞ

i dr~2. . .dr~N : We conclude, as before, that

the ground state Kohn–Sham wavefunction W0
v(KS) is also

an eigenfunction of the Kohn–Sham Hamiltonian bHKS
v0 ;

namely, bHKS
v0 WvðKSÞ

0 ¼ E
vðKSÞ
0 WvðKSÞ

0 : Clearly, therefore,

although vs and v0s differ by more than a constant, they

associate with the same density q0
v(KS). Moreover, because

the Kohn–Sham Hamiltonian is separable, we obtain again

the Kohn–Sham equations:

ðt̂ þ v0sÞ/
KS
i ¼ EKS

i /KS
i : ð18Þ

Thus, we have shown that in the case of the Kohn–Sham

equations, the instability potentials can be generated by the

same procedure given above. In other words, the calculated

effective or exchange-correlation potentials are unique up

to any set of functions that projects the basis set out of

itself, and those functions can always be constructed. The

present approach leads, essentially, to the same conclusions

initially established by Harriman [38] and later on by

several other workers [39, 41, 42] where these instability

conditions are related to the linear independence of finite

sets of products of occupied and virtual orbitals.

In view of the unavoidable fact that given some physical

potential it is always possible to construct potentials differ-

ing from the physical one by more than a constant, another

question one may ask is whether these new potentials are

physically acceptable. For example, as Savin et al. [52] have

found, when certain changes are made on the potentials,

such as shifts in small regions, or the introduction of rapid

oscillations, then the density is not affected. Although these

are potentials that differ in more than a constant their

physical significance in relation to the Coulomb many-body

problem is not readily apparent (i.e., the particle might not be

affected by the rapid oscillations of the potentials [52]).

5.2 Stability conditions for the potentials

An interesting question has to do with whether, given an F,

it is possible to construct a subclass of potentials v, v0 [ Y

such that F is stable under the action of their corresponding

Hamiltonians. For such a subclass, we would have a true

example of the application of the Hohenberg-Kohn theo-

rem in a finite subspace F. Let us mention that the arisal of

unphysical potentials has been regarded [41] as the mani-

festation of an ill-posed problem resulting from the use of

unbalanced (and, hence, unsuitable) basis sets. A proposed

solution relies on the introduction of a modified functional

that incorporates a regularizing smoothness measure to

filter out the unphysical potentials.

Explicitly, these stability conditions guaranteeing the

fulfillment of the Hohenberg-Kohn theorem in a finite

space are given by bHvF � F; bHv0F � F; and DVF � F:

Moreover, for all N-particle functions Wn
v [ F (with

n = 0,..., M) and Wm
v [ Fc (with m = M ? 1,..., ? and

where Fc denotes the complement of F), the stability

conditions are satisfied provided that

hWv
njDV jWv

mi ¼ 0 for n ¼ 0; . . .;M þ 1;

and m ¼ M þ 1; . . .;1 ð19Þ

Now, making the same considerations as those leading to

Eq. 8 we can rewrite Eq. 19 as:
Z

d3r~qnmðr~ÞDvðr~Þ ¼ 0 for n ¼ 0; . . .;M þ 1;

and m ¼ M þ 1; . . .;1 ð20Þ

Assume that the infinite set f/iðr~Þ/jðr~Þg is linearly

dependent, for at least some set {aij} (for a proof of this

statement, see Ref. [42]), i.e.,
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X1

i¼1

X1

j¼1

aij/iðr~Þ/jðr~Þ ¼ 0 ð21Þ

For an arbitrary function f ðr~Þ we have from Eq. 21 that

X1

i¼1

X1

j¼1

aijfij ¼ 0 where fij ¼
Z

d3r~/iðr~Þ/jðr~Þf ðr~Þ

ð22Þ

Expanding the transition 1-matrix

D1
nmðr~; r~

0Þ ¼
X1

i¼1

X1

j¼1

cnm
ij /iðr~Þ/jðr~0Þ ð23Þ

and using qnmðr~Þ ¼ D1
nmðr~; r~Þ we obtain for the stability

condition

X1

i¼1

X1

j¼1

cnm
ij Dvij ¼ 0 where

Dvij ¼
Z

d3r~/iðr~Þ/jðr~ÞDvðr~Þ ð24Þ

Now, since Dv is arbitrary we can set it as

Dvij ¼
fijaij

cnm
ij

ð25Þ

Hence, it follows that the stability condition holds provided

that the potential difference is defined through the matrix

elements defined by Eq. 25, and that the set f/iðr~Þ/jðr~Þg
satisfies the linear dependency condition given by Eq. 21.

5.3 Instability versus nonuniqueness of potentials

A concept related to instability but, however, logically

disjoint from it, is that of nonuniqueness of potentials.

Whereas the former arises due to the fact that the action of

a potential on a wavefunction belonging to a subspace

produces a wavefunction which does not belong to the

same subspace, the latter means that the potentials are not

uniquely determined by the densities. Nonuniqueness of

potentials arises in the case of density functional theories

for spin and magnetic systems as well as for current-car-

rying and superconducting systems [44–51].

Nonuniqueness, as has been shown by Capelle et al.

[51], occurs when there is a set formed by more than one

density characterizing a given system such that the densi-

ties in this set determine just a manifold of ground-state

wavefunctions and not specific ground-state ones. Fur-

thermore, the wave functions belonging to this manifold

can be ground states in more than one set of external

potentials. Hence, nonuniqueness is a general property of

particular quantum systems and is not directly related to

whether the state of the system is represented in a subspace

or in the full Hilbert space. However, as initially shown by

Harriman [38] and as is illustrated in the present work,

nonuniqueness may also occur when there is only one

density characterizing the system provided that the system

is represented in a finite subspace and that the instability

conditions discussed above hold. It is in this particular

situation, hence, that we may talk about an inestability-

generated nonuniqueness. For the reasons discussed above,

we expect that this type of instability-generated non-

uniqueness will also be present in the finite orbital set

treatment of Kohn–Sham equations, even in the case when

spin is present.

6 Conclusions

In the present study, by utilizing an extension of the

Hohenberg-Kohn theorem to finite subspaces, we have

been able: (1) to analyze the subspace stability conditions

related to the potential; (2) to devise explicit methods for

generating potentials that violate subspace stability; (3) to

provide numerical examples of instability potentials for

simple problems; (4) to discuss some consequences of

subspace instability for the numerical evaluation of exact

Kohn–Sham exchange-correlation potentials, (5) to relate

the stability conditions to linear dependence of finite basis

sets, and, (6) to clarify the connection between instability

and nonuniqueness of the potentials.

The present study brings into focuss the problem of

establishing practical criteria for guaranteeing subspace

stability in finite basis set applications Hohenberg-Kohn–

Sham theory as well as of setting up physical criteria that

would allow us to discern between spurious and truly

physical potentials. This problem is of paramount impor-

tance, as recent discussions have shown [40–42]. In this

context, the present results might prove useful for gaining

control over the error Dv = v-v0 that arises when one

works in a finite-dimensional space F (supposing qv = qv0

for the ground-state densities of the matrix-representation

of the operators Hv and Hv0). The ‘‘distance’’ between F and

the whole space should probably be useful in this endeavor.

However, it is not yet clear how this distance should

be defined and used in order to measure and control the

error Dv.
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